Aerodynamic Control Using Windward-Surface Plasma Actuators on a Separation Ramp

نویسندگان

  • Javier Lopera
  • Mehul P. Patel
  • Srikanth Vasudevan
  • Ed Santavicca
چکیده

Wind-tunnel experimentswere conducted on a 47-deg sweep, scaled 1303unmanned air vehiclemodel to assess the performance of an innovative windward-surface plasma actuator design for flight control at low angles of attack. Control was implemented by altering the flow past an aft separation ramp on the windward side using a single dielectric barrier discharge plasma actuator. The influence of ramp-expansion angles (20, 30, and 40 deg) on the plasma actuator’s ability to affect flow separation and aerodynamic lift was examined. Both steady and unsteady actuations of the plasma actuator were examined, and their effects were captured using lift measurements and flow visualizations. Results reveal that the plasma actuator effects are highly dependent on the ramp angle and actuator parameters such as duty cycle and modulation frequency. The actuators produced significant shifts in the lift curve, up to 25% for the most effective ramp angles of 20 and 30 deg, in the 0–20-deg range. Flow visualization results confirmed that the plasma actuator causes theflow to reattach over a region downstreamof the separation ramp. For all ramp cases examined, the unsteady (pulsed) actuator was more effective than the steady actuator in controlling flow separation and influencing the aerodynamic lift. The aerodynamic effect of plasma actuators was found to be highly dependent on the ramp angle and the separation strength over the ramp. Significant control forces were obtained using windward-surface plasma actuators and, indirectly, these control forces can be implemented to generate substantial control moments for maneuvering air vehicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EXPERIMENTAL INVESTIGATION OF DRAG REDUCTION ON AHMED MODEL USING A COMBINATION OF ACTIVE FLOW CONTROL METHODS

Aerodynamic drag is an important factor in vehicles fuel consumption. Pressure drag which is the main component of total drag is a result of boundary layer separation from vehicle surface. Flow control methods are applied to avoid or at least delay separation. Depending upon whether these methods consume energy to control the flow or not, they are called active or passive control methods. In th...

متن کامل

3D Simulation of the Effects of the Plasma Actuator on the Unsteady, Turbulent and Developing Flow within a Circular Duct

The objective of current paper is 3D simulation of turbulent, developing flow and unsteady within a circular duct in presence of the body force vector persuaded by Dielectric barrier discharge (DBD) plasma actuator inside the surface of geometry for the first time. This article aims at investigating of applying plasma actuator to control separation with special arrangement of electrodes. For th...

متن کامل

Plasma Virtual Actuators for Flow Control

Dielectric-barrier-discharge (DBD) plasma actuators are all-electric devices with no moving parts. They are made of a simple construction, consisting only of a pair of electrodes sandwiching a dielectric sheet. When AC voltage is applied, air surrounding the upper electrode is ionized, which is attracted towards the charged dielectric surface to form a wall jet. Control of flow over land and ai...

متن کامل

Plasma Actuators for Hingeless Aerodynamic Control of an Unmanned Air Vehicle

The use of dielectric barrier discharge plasma actuators for hingeless flow control over a 47-deg 1303 unmanned combat air vehicle wing is described. Control was implemented at the wing leading edge to provide longitudinal control without the use of hinged control surfaces.Wind-tunnel tests were conducted at a chord Reynolds number of 4:12 10 and angles of attack ranging from 15 to 35 deg to ev...

متن کامل

Numerical and Experimental Analysis of Plasma Flow Control Over a Hump Model

Turbulent flow separation over a wall-mounted hump model and its control using plasma actuators were studied numerically and experimentally. The hump model chosen in this study was that used in a 2004 NASA Langley CFD validation workshop for turbulent separation control using synthetic jets. The numerical simulations solved the Reynoldsaveraged Navier-Stokes equations using Fluent. Different tu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007